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Electricity, magnetism and light.

Suppose you are on a camping trip, far from the amenities of modern technology, and that
you have brought along only the basic essentials (tent, food, etc.). Imagine that for some
reason you are asked to demonstrate the principal forces of nature which we believe to
operate at the macroscopic scale (the scale of everyday life). To demonstrate the effects
of gravity would be more or less trivial; to demonstrate those of magnetism would be
a little more difficult, but even if you have been so unwise as not to bring a compass
with you, you might with luck perhaps find a piece of magnetite and demonstrate its
tendency to orient. But how would you demonstrate the effects of electric forces? Unless
you happen to have brought along the traditional apparatus of cat’s fur and amber, that
is not so easy. Probably the most common experience most of us have in everyday life of
the effects of static electricity (as opposed to those of electric currents) is the tendency
of shirts or blouses to stick to the tumbler-dryer as you try to remove them; it is ironic
that the details of this everyday manifestation of the electric force are still not totally
understood!

The basic phenomenon of static electricity was known to the Greeks, (the name
actually comes from the Greek word for “amber”), but it was not until the late eighteenth
century that its fundamental properties really began to be clarified, and the course of
the discussion was not always smooth. There is one very basic observation that one
can make which distinguishes electricity from gravitation: In the case of gravitation, all
bodies attract one another independently of their nature. On the other hand, in the
case of electricity, we find that if A attracts B and B attracts C, then A always repels
C; while of D repels E and E repels F, then D always repels F. (In principle it should
be possible to verify this statement at the laundromatl) This implies that there are two
and only two “kinds” of electricity, which we may denote ”positive” and “negative”, and
that “like” charges always repel while “unlike” ones always attract. The definition of
“positive” is purely a matter of convention (we now know that the most natural “unit”
of electricity, the electron, actually has negative charge).

What is the quantitative law of force between two electric charges? Recall that in
the case of gravitation, Newton had postulated the law

Fgrav = G
m1m2

r2
12

It is interesting that it was a long time before this law could be directly checked in ter-
restrial experiments (In a famous experiment in 1798, Cavendish measured the constant
G, but apparently checked neither the r−2 dependence nor that on the masses m1, m2).

In the case of electricity, the basic law is known as Coulomb’s law and was in fact
stated by Coulomb in 1785:

Fel = + const
q1q2

r2
12

(outwards)

Actually, Coulomb claimed to have demonstrated only the 1/r2 dependence, not that on
q1q2 and even for that there is a suspicion that he fudged his data. In fact, the law was
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energetically contested by some of Coulomb’s contemporaries. However, we now believe
that despite the dubious nature of his original evidence for it, it is in fact correct.

An obvious question is: Is the q1q2 dependence in Coulomb’s law merely in effect
a definition of the charges? No, it is actually more than this, at least in principle.
Consider four charges q1, q2, q3, q4 arranged at equal distances from one another (e.g. at
the vertices of a tetrahedron). Then it is a nontrivial consequence of Coulomb’s law that
if Fij denotes the strength of the force between the charges i and j (irrespective of its
direction) then

F12F34 = F13F24 (∗)

It would be difficult to check this prediction directly, because all that one can normally
measure is the total force on a charged object; but if one is prepared to assume that
under certain circumstances the charge does not change with time (which is actually not
a bad approximation under normal conditions for the traditional pith balls, etc., used in
this kind of experiment), then one can examine the forces between bodies two at a time
and verify the prediction (∗).

The constant which occurs in Coulomb’s law is, of course, a matter of convention
and effectively defines the unit of charge. In the system of units which originally evolved
in the nineteenth century, the constant is taken equal to 1, so that a unit charge by
definition is such that two such charges placed at unit distance exert on one another
unit force. The socalled SI system of units which is more commonly used nowadays
defines the unit of charge independently of Coulomb’s law (just as the unit of mass,
the kilogram, is defined independently of Newton’s law of gravitation) and therefore
there is a constant, analogous to the Cavendish constant G in gravitation, which enters
Coulomb’s law. The details of all this are not very important: what is important is that
whatever system we use we now have, at least in principle, a way of measuring electric
charge, quantitatively.

Once we have such a quantitative measure, we can verify an extremely important
statement: total electric charge is conserved, or formally for any closed system of N
bodies labeled by i (i = 1, 2 . . . N) we have∗∑

i

qi = const

This “conservation law” is analogous to the conservation of the total mass of a system
of bodies, but with the important difference that since charge, unlike mass, can be either
positive or negative, an initially uncharged body (q = 0) can separate into two oppositely
charged ones or vice versa.

An obvious question is: Why are there two types of electric charge but only one type
of mass? From a modern point of view this is actually one of the deepest questions in
physics; we will be able to shed some light on it (though not to answer it completely) ,
when we come to general relativity.

∗Remember that the notation “
P

i qi” stands for the sum over the charges on the various bodies.
(e.g. for 3 bodies the equation given simply means that the quantity (q1 + q2 + q3) is a constant, even
though q1, q2 and/or q3 individually may not be).



PHYS419 Lecture 10 Electricity, magnetism and light. 3

The idea of a field
(Einstein, appendix V; Hesse, §VIII) (Compare the idea of a field in fluid mechanics, etc., Einstein
pp. 144-6, Hesse pp. 189-198)

Both gravitational and electrostatic forces have a “product” structure (Fgrav ∝ m1m2,
Fel ∝ q1q2). Hence it is possible to look at it this way: body number 2 produces
an “effect” (”field”) at the position of 1, and this field exerts a force on 1. E.g. for
electrostatics, define an “electric field” E due to 2:

E = const q2/r2
12 (outwards, if q2 is positive)

F1 = q1 × (E2 at position of 1)

However, we could (and must!) equally well regard 1 as producing a field equal to
const q1/r2

12 and 2 is experiencing a force F1 = q2 × (E1 at position of 2). Thus

F1 = −F2 = const q1q2/r2
12

as required by Newton’s third law. Now a third body, q3, will experience the sum of
forces from 1 and 2: F3 = q3 × (E1 at 3 plus E2 at 3), but it will then itself produce its
own field. And so on.

Great simplification is introduced if we consider a “test” particle of ”infinitesimal”
charge, say δq. The advantage is that the field due to δq itself is then negligible. Thus
we can define the total electric field at a given point as simply the (electrostatic) force
exerted on an “infinitesimal” charge δq that point divided by δq:

E = lim
δq→0

F on δq

δq

In a similar way, we can define the gravitational field as the ratio Fgrav/δm for an
infinitesimal mass δm. As noted in effect before (lecture 7), the gravitational field (in
newtons/kg =m/sec2) is just the gravitational acceleration g, and therefore is often not
introduced explicitly.

We have done something, here, which is much more fundamental than it looks at
first sight. Namely, we have replaced the notion of a direct force between two charged
bodies (which can be defined, obviously, only if there happen to actually be two bodies
at the points in question!) by the notion of a field produced at point 2 by body 1, which
exists whether or not there is actually a body there at point 2 to feel it. The crucial
point is that while in order to verify the existence of the field in question we would have
to introduce a test charge and measure the force on it, the field is assumed to exist even
in the absence of such a test charge. In the language of modern philosophy of science,
its existential status may be that of a “propensity”. Eventually, we shall go further and
introduce the notion of a field which can exist in free space even in the absence of a
charged body to produce it.

We must briefly discuss one further concept, that of the electrostatic potential (call
it Vel) This is defined in such a way that if we make a small displacement ∆x in the
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direction of the electric field Eel then the charge ∆Vel of the potential is given by the
expression

∆Vel = −Eel∆x

(compare the discussion of the “potential energy” in lecture 8).
It is not entirely obvious that this permits Vel to be uniquely defined as a function of

position, but in fact the form of Coulomb’s law turns out to guarantee this (the zero of
electrostatic potential is however arbitrary). If we take the zero of V at infinity, then it
turns out that the potential at point 2 due to a charge q1 at point 1 is just const q/r12.
The contribution of electrostatic effects to the potential energy of a body at a given
point in space is just the charge on that body times the value of Vel at that point.

Magnetism

The original “magnetic” effects discovered by the Chinese and the Greeks and systemat-
ically investigated by Gilbert (1600) were associated with what we would now call per-
manent magnets (iron filings, earth’s core, etc.). Following the discovery of Coulomb’s
law of electrostatics, it was tempting to think of magnetism in analogous terms: the
forces between permanent magnets were observed to be similar to those between electric
dipoles, i.e. a positive and negative electric charge placed close to one another ⊕–	. But
no isolated magnetic poles were ever found.

Following Coulomb’s work, people soon learned to produce (macroscopic) electric
currents by the use of batteries, etc. (Volta 1775–1800), i.e., they could produce a
steady flow of charge. A crucial observation was made by Oersted and Ampere in 1820:
namely the deflection of a compass needle by an electric current.

current

direction of deflection

Thus it was clear that magnetism is in some way associated with electric currents.
Within a couple of months, Biot and Savart had discovered the quantitative law of force
between two currents, which actually has a quite complicated form. For our purposes it is
sufficient to note that two long parallel wires attract if the currents are parallel, but repel
if they are anti parallel. (Thus, a loop is “self-repelling” – an important consideration
for energy storage, high-energy accelerators, etc.) But the general structure was similar
to Coulomb’s law. The Biot-Savart law can be summarized in the following statements:

(a) A current element produces a magnetic field H which is proportional to 1/r2

(hence, for an infinite straight wire, H ∝ 1/r, where r is the distance from the
wire) and is perpendicular to the current and to the direction from the current to
the point in question.
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(b) A second current element experiences a force which is perpendicular both to itself
and to the field, and is proportional to the current and to the field.

(c) A permanent magnet is equivalent to a current loop. Thus, a permanent magnet
will tend to orient itself parallel to the magnetic field (so that the forces are only
“radial” and hence the system is stable).

(otherwise there will be a torque – a twisting force). It turns out that magnetic
interactions are difficult to discuss in terms of potential energy or “magnetic po-
tential”: fortunately, we do not need to go into this point in detail.

Thus, around 1840 one had 3 different kinds of forces which appeared to “act in-
stantaneously at a distance” (gravitation, electrostatic (Coulomb) and magnetic), There
was no apparent connection between gravity and either electricity or magnetism, and
the connection between the electric and magnetic forces was only through their sources
(current = moving charge).

Digression: Why are electrostatic effects so difficult to see by comparison with grav-
itational and (in modern household machinery) even magnetic effects? According to our
current concepts, a single pair of protons interact in all 3 ways, and if they are slowly
moving relative to one another the electric force is about 1036 times the gravitational one
and many times the magnetic one! However, electrostatic effects are typically strongly
compensated because of the presence of both positive and negative charge†.

By contrast, gravitational effects are not compensated at all, and magnetic effects
need not be (the flow of negative charge is not (usually) compensated by that of positive
charge). An interesting question is: How fast would a pair of similar charges have
to move in order that their magnetic attraction would compensate their electrostatic
repulsion? The answer is: about 3 × 108 m/sec! The significance of this result (which
surely must have been worked out in the early nineteenth century) does not seem to
have been realized at that time.

Connection between electricity and magnetism

A critical discovery was made by Faraday in 1831: a changing magnetic field through
a circuit induces an electric field around the circuit. This field cannot, apparently, be
derived from a potential (technically, it is “transverse”), This already seems to show that
electricity and magnetism cannot be completely independent phenomena. The final piece
of the puzzle was supplied by Maxwell around 1860. Consider the (dis)charging of a pair
of capacitor plates:

†Note: To avoid electrostatic effects spoiling Cavendish’s experiment, we need a static electrification
of < 1 part in 1016 !
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+ −

I

E

By Ampere’s law, there must be a finite magnetic field around the currentcarrying wire.
What happens between the capacitor plates, where there is no current? It can be shown
that if the magnetic field were to disappear, then its form in the plates would have to
correspond to that of isolated magnetic poles, which as far as we know do not exist.
Hence as long as the current is flowing, there must exist a magnetic field also between
the plates, and one way of looking at this is that it is produced by the fact that the
electric field in this region is changing in time (because the plates are (disjcharging).
Quantitative calculation shows this is right, and thus

(circulating) magnetic field ∝ rate of change of electric field

Thus: a time-varying magnetic field produces an electric field which ”circulates” around
it, and a time-varying electric field produces a magnetic field which circulates around it!

Note, however, that so far the argument has always involved actual physical circuits
with real charges moving in them. Maxwell’s real conceptual leap was to apply the
argument also in empty space, i.e. make it independent of the sources, if any, of E and H.

Electromagnetic waves and light

At this point we need to make Faraday’s and Maxwell’s laws a bit more quantitative:
If we abstract from the physical circuits and imagine the “fields” exist also in “empty”
space, then:

Faraday: time rate of change of magnetic field = a constant (C1) × space rate of “transverse”
change of electric field.

Maxwell: time rate of change of electric field = another constant (C2) × space rate of (“trans-
verse”) change of magnetic field.

Thus, using Dt as a shorthand for “time rate of change of”, and similarly Dx for
“space rate of change of”, we have

DtH = C1DxE and DtE = C2DxH

Combining these

Dt(DtH) = C1Dt(DxE) = C1Dx(DtE) = C1Dx(C2DxH) = C1C2Dx(DxH)
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i.e. second time derivative = const. × second space derivative! Now if we were to regard
H as a coordinate, this would read

acceleration ∝ rate of change of slope

which is just the equation whose solutions are waves (see lecture 9)! Thus, Maxwell
postulated that the existence of electromagnetic waves in free space, in which E and
H each oscillate perpendicular to the direction of propagation of the wave and to one
another, and in phase with one another.

What is the speed of these waves? We know C1 experimentally and C2 from Maxwell’s
argument: they are related respectively to the constants which enter the Coulomb and
Biot-Savart laws, provided that the current is defined as charge/second. And we find

speed of EM waves ≈ 3× 108m/sec

But this is exactly the speed of light! (The latter was first measured by Roemer as early
as 1676, from precise observation of the occultation of Jupiter’s moons.) Now though
Newton had believed light to be a stream of particles, experiments on interference and
diffraction in the early nineteenth century had convinced most people that it was actually
some type of wave, and moreover (from polarization experiments) that it had to involve
some kind of transverse displacement of the medium (unlike e.g. sound (in air) which is
believed to correspond to a longitudinal displacement).

Thus, Maxwell’s (revolutionary) conclusion was that visible light is simply one part of
the electromagnetic wave spectrum, namely that corresponding to frequencies ∼ 1016 Hz.

audio radio microwave infrared visible ultraviolet X-ray γ-ray . . .

This conclusion was soon given strong support by Hertz’s experiments in which he showed
that spark discharges could indeed produce electric fields at large distances which were
considerably greater than any Coulomb fields around (Note: wave fields fall off as 1/r
not 1/r2!). Since the invention of radio, electromagnetic waves have of course become
an everyday matter!

Quite apart from the obvious practical implications of Maxwell’s work, it is almost
impossible to overestimate its conceptual significance. Consider the history of the con-
cept of the electric (or magnetic) “field”. Originally it was introduced simply as a con-
venient shorthand in which to express Coulomb’s law of interaction between a “source”
charge q1 and a ”test” charge q2. Then the “test” charge was taken away, and the field
became a sort of propensity for a force to be exerted on a charged object, should one
happen to be there–but, it existed even in the absence of such a charge. However, at
that stage it was still necessary for the existence of the field that the “source” charge
should be there to produce it. Finally, in the work of Maxwell, the source charge is
also removed, and the electric and magnetic fields essentially sustain one another forever
as they propagate across empty space. This is a particularly striking example (though
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certainly not a unique one) of the way in which in the history of physics a concept can
be invented initially as little more than a mathematical convenience, and yet eventually
as it were come to take on a life of its own.

But if light is a wave, what is it a wave of ? What, exactly, is oscillating? Af-
ter all, water waves correspond to a displacement of the surface of the pond, sound
waves to that of the air molecules, waves on strings to the transverse displacement of
the string. . . Surely the electric and magnetic fields have to represent the transverse
displacement of something? The answer given by most physicists in the late nineteenth
century was that the “something” was “the ether”. The concept of the ether had evolved
considerably from its late-medieval (Aristotelian) version, and by the end of the nine-
teenth century it had effectively lost all its properties save that of being the vehicle for
the transmission of electromagnetic waves; or, as one commentator put it, “the only
function of the ether was to serve as the subject of the verb “to undulate”.

As the nineteenth century drew to a close, the scientific community as a whole was
in a mood of great confidence that all the important principles of physics and chemistry
were essentially understood, and that future progress was likely to be a matter of filling
in the gaps. These hopes were to be rudely shattered in the first two decades of the
twentieth century, and demolished even more finally in the third.


